
PH: 80020-7683(96)00091-1

Pergamon

Int. J. Solids Structures Vol. 34, No. 12, pp. 1505-1516, 1997
© 1997 Elsevier Science Ltd

All rights reserved. Printed in Great Britain
0020-7683/97 $17.00 + .00

FRICTIONAL HEATING IN SLIDING CONTACT OF
TWO THERMOELASTIC BODIES

V, J, PAUK and A. A. YEVTUSHENKO
Department of Mechanics and Mathematics, Lviv University, I Universitetska St.,

290602 Lviv, Ukraine

(Received 21 March 1995; in revisedform 9 May 1996)

Abstract-The plane contact problem of an elastic thermally conducting cylinder sliding over the
surface of a thermoelastic half-space is considered. The problem is analysed with the convective
cooling of the cylinder surface in separation region and non-ideal thermal contact between bodies.
The problem is formulated in terms of three governing integral equations with unknown pressure
and contact temperatures. The equations are solved numerically, using the Gauss-Jacobi and
trapezoidal-rule quadratures. The effect of Peelet's number, Biot's number and the thermal con
ductivities of the temperature fields and the load required to maintain the contact path at a fixed
value are investigated. © 1997 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

Plane contact problems involving frictional heating for a cylinder sliding over the surface
of the half-space have been considered by many authors (see e,g, Lifanov and Saakyan,
1982; Hills and Barber, 1986; Maksimovich et at" 1986, 1992; Hills et at" 1990; Yev
tushenko and Ukhanska, 1993), The essentially new results, which differ from the solution
ofthis problem and corresponding isothermal problem (see e,g. Galin, 1980) were obtained.
So, by Hills and Barber (1986) the existence of the limiting value of the contact patch with
increasing total load at constant sliding speed was shown. Moreover, it was found that the
violation of solution arose for some combinations of input parameters.

The above authors considered the idealized boundary conditions only: the perfect
thermal contact between the bodies and thermoinsulation offree surfaces. The last assump
tion permits us to use the well known fundamental solution for half-space, which is heated
by stationary (see e.g. Carslaw and Jaeger, 1959) or moving (see e.g. Barber, 1984) line
heat sources. As a result, the condition of the insulation in the separation region was
satisfied automatically and the boundary conditions in the contact region lead to a system
of integral equations on the unknown pressure and heat fluxes.

The method of reducing the problem with convective heat transfer from the free surface
of contacting bodies to the system of integral equations on the unknown pressure and the
contact temperatures as proposed by Yevtushenko et at. (1992). In the framework of this
approach two limiting cases have been considered: when all of the frictional heat flows into
the cylinder (Pauk, 1994) or into the half-space (Grylitsky and Pauk, 1995). In this paper
it is supposed that both bodies are elastic and thermally conducting.

STATEMENT OF THE PROBLEM

The model considered is shown in Fig. l(a). Two bodies are pressed together by force
P. One of the bodies (cylinder of radius R) slides on the surface of the other (half-space)
and heat is generated due to friction. This ensures that the contact area (a, b) will remain
substantially stationary with respect to the cylinder and move at the sliding speed V over
the half-space surface. Both bodies are elastic and thermal conductors. Shearing tractions
on the interface are assumed to be proportional to the normal pressure, with a coefficient
offriction! In solving the contact problem we take into account the coupling effect between
normal and shear tractions.
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Fig. 1. (a) Geometry ofcontact. (b) The location ofthe "third body" between the contact bodies.

In the heat conduction problem we assume that the thermal contact is non-ideal at the
interface in the contact region and there is no heat flux across the half-space surface in the
separation region. Outside the contact region the convective heat exchange between cylinder
and surroundings takes place. We note that the use of the last boundary conditions resolves
the classical problem of two-dimensional heat conduction into a half-space with insulated
boundaries, in which the temperature does not approach a limit at infinity (see e.g. Carslaw
and Jaeger, 1959). With convective cooling at the free surface, a zero limit can be imposed.
No such device is needed for the other surface, since the convection of the problem (the
heated zone moves over the surface of the half-space) enables us to use a zero initial
temperature condition (see e.g. Carslaw and Jaeger, 1959). This is why we use the heat
exchange by Newton's law for a cylinder, but not for half-space.

We now introduce rectangular coordinate axes xOy, rigidly connected to the cylinder;
in these coordinate axes the contact segment (a, b) is motionless and thermomechanic
processes are steady. Values, referred to the cylinder and the half-space, are denoted by the
suffices 1 and 2, respectively.

It is well known that heat generation occurs in the thin subsurface layer (see e.g.
Bowden and Tabor, 1950). This layer is often called the "third body". The change of
thermomechanical properties of this body with the thickness is great because it is composed
of the surface roughness, thin inclusions, cracks, etc. Thus, the thermal boundary conditions
at the interface in the contact region may be formulated after the solution of the heat
conductivity problem for the layer of thickness I with the variable conductivity K(y)
[Fig. l(b)].

In accordance with Podstrigach (1963), we will solve the one-dimensional heat con
ductivityequation

d [ dT(Y)J- K(y)~- = -q(y),
dy dy

with the following boundary condition

O~y~l (1)
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aty = I, T = T2 aty = 0

1507

(2)

dT
K(y)~ = -q[

dy

dT
aty = I, K(O) dy = q2 aty = 0 (3)

where Ti are the temperatures, Ki are the conductivities, q(y) is the heat sources function
in the layer of the thickness I. We note that K(f) = K b K(O) = K 2•

Integrating eqn (2) and satisfying conditions (3) we obtain

(4)

where Q = S~ q(y) dy.
Now integrating both sides of eqn (1) and taking the conditions (2) into account we

find

(5)

where

(6)

It follows that the upper and lower limits of the difference in the left side of eqn (5)
are

(7)

(8)

Since the layer thickness 1is very small the mean value of the temperature difference
Tl - T2 may be used. From the inequalities (7) and (8) we have

(9)

where ro = IK; [ is the contact thermal resistance.
The sum of heat fluxes q/x), i = 1,2 entering each oscillating body is equal to the rate

of frictional heat generation throughout the contact region (a, b). Hence,

ql (x) +q2(X) =fVp(x), a ~ x ~ b (10)

where p(x) is the contact pressure.
Hence, the thermal boundary conditions in the contact region are eqns (9) and (10).

In the separation region we have

(11)

where h is the heat transfer coefficient.
The mechanical boundary conditions at y = 0 are
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O"yl = O"Y2 = -p(x), a ~ x ~ b

O"xyl = O"xyz = -fp(x) , a ~ x ~ b

O"yj =O"xyj =0, i=I,2, x<a,x>b

(12)

(13)

(14)

(15)

where O"ij are the stresses, V j are the y-direction displacements of bodies.

REDUCTION TO THE SYSTEM OF INTEGRAL EQUATION

The temperature field T](x,y) in the half-space due to a stationary heat flux qj(x) in
the region a ~ x ~ b, y = 0 and cooling in accordance with the Newton's law (11) in the
region x < a, x> b, y = 0 is given by Yevtushenko et al. (1992) as

Tj(x,y)- n~]rT1(x')Mj(x-x',y)dx' = n~jrq](x')M}(x-x',y)dx'

Ixl < oo,y ~ 0 (16)

where

(17)

Here and further we note Tj(x) == Tj(x, 0), i = 1,2.
Body 2 experiences a distribution of moving heat flux. The temperature Tz(x,y) due

to the heat flux qz(x) currently distributed at a ~ x ~ b, y = 0 (outside this region the
boundary is thermoinsulated) and moving at speed Vis given by Carslaw and Jaeger (1959)
as

where

h ib

Tz(x,y)- -K qz (x')Mz(x-x', y) dx', Ixl < oo,y ~ 0
n z a

(18)

(19)

kz is the thermal diffusivity, Ko(o) is the modified Bessel function of the second kind.
Similarly, the slopes of the surfaces of static and moving bodies due to heat fluxes

qj(x), i = 1,2 are given by Yevtushenko et al. (1992) and Barber (1984), respectively, as

where

dvth(x) D rb+ = - : Ja qz(x')Nz(x-x') dx', Ixl < 00

(20)

(21)
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J; = IX j (1 +v;)/K; are the thermal distortions, IX; are the thermal expansions, V; are the Pois
son's ratios, Pi are the rigidity moduli, I/"),j = 0,1 are the modified Bessel functions of the
first kind.

In addition, the surface displacements of the bodies due to interfacial tractions are (see
e.g. Galin, 1980)

dve(x) 1- 2v· 1- V fb p(x') dx'
-'-= ---'fp(x)+(-l)i+I--' , Ixl < 00, i= 1,2.

dx 2Pi 1tPi a x-x'
(22)

Normal displacements on the surface y = 0 ofthe cylinder and semi-space are presented
as the superposition of thermoelastic and elastic parts (see e.g. Hills and Barber, 1986)

v;(x) = v:h(x) + vf(x) , i = 1,2, Ixl < 00

where v:h and vf are given by eqns (20)-(22).
Equations (9) and (10) may be rewritten as

1 1
q2 (x) = -2jVP(x) + - [TI (x) - T2(x)], a ~ x ~ b.

Yo

(23)

(24)

(25)

substituting relations (24) and (25) into (20) and (21), and making use of eqns (23)
and (15) gives

(
1-2VI 1-2V2) (1- VI l-V2) 1 fb p(x') dx'- ----- fp(x)+ ----- - ,

2pI 2p2 PI P2 1t a x-x

a ~ x ~ b. (26)

Two other equations are obtained by substituting expressions (24) and (25) into eqns
(16) and (18) at y = O. We obtain

- 2~1rp(x')M I (x-x') dx' = 0, a ~ x ~ b (27)
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- ~~2rp(x')M2 (x-x')dx' = 0, a:::; x:::; b (28)

where Mi(x) == Mj(x, 0), i = 1,2.
The load P, applied to the cylinder, will also be prescribed and hence

rp(x)dx = P. (29)

To obtain eqns (26)-(29) expressed in terms of dimensionless variables the following
notations are introduced

x = aos+bo, x' = aor+bo, ao = (b-a)j2, bo = (b+a)j2

0(=1-v l +l-v2 fJ=~(1-2VI_1-2V2) Pe=Vao
J11 J12' 0( 2J11 2J12' 2k2 '

P jVP
p(x) = -p*(s), Ti(x) = K K Tt(s) , i = 1,2.

ao 1+ 2

In this way we obtain the system of integral equations

-ffJp*(s) + ~ II p*(r) {_l_ +fPeR[J*N1(s-r) +N2 (S-r)]}dr
n -1 s-r

2fPeR 11
+ n(1 +K*) -1 71'(r)[J*(Bi-K)N] (s-r) + KN2 (s-r)] dr

2fPeR 11
+ n(1 +K*) _I l1(r)[J*KN1(s-r) -KN2 (s-r)] dr

= - (s+ ~:)A, lsi:::; 1

Bi-KI
1 I'l l

71'(s) - -- 71'(r)M1(s-r) dr- - l1(r)M] (s-r) dr
n -1 n -I

l+K*Il
-~ _ /*(r)M1(s- r) dr = 0, lsi:::; 1

I' 11 I' IIl1(x) + nK* -1 l1(r)M2 (s-r) dr- nK* _171'(r)M2 (s-r)dr

l+K*Il
- 2nK* -I p*(r)M2 (s-r)dr = 0, lsi:::; 1

(30)

(31)

(32)

(33)
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1 (PH) 1A=2nABP' tan(nA)=-ff3' O<A<I, B=l-A.
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(34)

PH is the force necessary to exert the isothermal contact region of the width 2ao (see e.g.
Galin, 1980)

2nABa~PH=-----C
Rrx

The dimensionless kernels of eqns (31)-(33) have the following form

M[ (s) = -Ci(lsIBi) cos(sBi) - si(sBi) sin(sBi)

M 2 (s) = exp( -sPe)Ko(lsIPe)

N j (s) = [Ci(lsIBi) sin(lsIBi) - si(sBi) cos(sBi)] sign(s)

{
exP( -sPe)[Io(sPe) - I[ (sPe)], s > 0

N 2 (s) =
0, S < 0

(35)

where si(') and Ci(') are sine and cosine integrals, respectively (se e.g. Abramowitz and
Stegun, 1964).

We note that the functions Ni(s) , i = 1,2 are regular and M;(s) , i = 1,2 have the
logarithmical singularity for small argument.

DISCRETIZAnON

Equation (31) is a Cauchy-type singular integral equation with index -1 for an
unknown functionp*(r) expressed in terms of Tt(r) and certain given functions. Hence, the
dimensionless contact pressure p*(r) may be represented as

(36)

where <p(s) is a bounded continuous function.
The integral eqns (32) and (33) may be considered as Fredholm-type equations of the

second kind for unknown functions Tt(s), i = 1,2. The dimensionless temperatures Tt(s)
we find in the form Tt(s) = ATt*(s).

Using the Gauss-Jacobi quadratures by Belocerkovskij and Lifanov (1985) for p*(s)
and replacing the actual distribution of the contact temperatures Tt by a piece-wise constant
representation, we obtain the discretized form of eqns (31)-(34) as
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=-(s+~:} m=I,2, ... n+1 (37)

Here

2r(n+A + 1)r(n+B+ 1)(2n+3)
Wk = - , k = 1,2, ... n

(n + I)W(n + 3),9i~·Br (rk),9i~~~) (rd

p~A.B)(rk) == 0, k = 1,2, ... n; ,9i~+1,-B)(sm) = 0, m = 1,2, ... n + 1

Pk= -1+2(k-0.5)ln, k= 1,2, ... n;

I
x,

()~~ = M;(u) du, i = 1,2.
x,

(40)

Xl =2(m-k+0.5)ln, X 2 =2(m-k-0.5)ln, k, m =1,2, ... ,n, ,9i~.B)O are the Jacobi
polynomials, r(') is the gamma-function, Yon is the regularized parameter introduced by
Belocerkovskij and Lifanov (1985). The solution of the system of linear algebraic eqns
(37)-(39) exists provided

lim Yon = O.
n-oc,

(41)

Thus, relations (37)-(39) constitute the system of 3n + I linear algebraic equations for
the same unknown functions Yom ((J(rk), n*(Pk)' n*(Pk), k = 1,2, ... n. The difficulties of
the solution of this system are connected with the fact that the values ao and bo, and
consequently a, b, are also unknown. The algorithm to determine them is described by
Yevtushenko et al. (1993). When, from eqns (37)-(39) we find all the values, then from eqn
(40) we obtain PHIP.

RESULTS AND DISCUSSION

The algorithm described in the previous section was implemented and used to explore
the behaviour of the system with various values of the input parameters n,f, [3, K*, 6* and
the independent variables Pe, Bi, K, aolR, bolR. The values of [3 and H for the large range
of metals is given by Hills et al. (1990). Further, to reduce the number of free variables to
manageable proportions, set f = 0.2, [3 = 0.3, H =1, 15* =1 and K =0.1.

Taking the limit (41) into account, the choice of number n permits the condition
IYonl < 10-6

. In this case, convergence of the numerical scheme was obtained with n ~ 40,
which yields the largest matrix (121 x 121) which can conveniently be inverted. We also
tested the present numerical method with problems which have an analytical solution. For
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Fig. 2. Distribution of the surface temperatures for K* = I, Bi = I and for several values of

Peelet's number.
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example, the algorithm was validated with elosed form solutions of the isothermal plane
Hertz contact problem by Galvin (1980) and the solution by Hills et at. (1990) with frictional
heating where the fast-moving cylinder is a non-conductor. The numerical algorithm gave
very good accuracy.

The distribution of dimensionless surface temperature n of the contact bodies for
Bi = I and for two values of Peelet's number is shown in Fig. 2. The rising of Peelet's
number causes a small decrease of stationary temperature of the cylinder and the great
falling of quasistationary temperature of the half-space. The jump between temperatures,
which is the result of the non-ideal thermal contact, essentially depends on the parameter
Pe. This jump increases with increasing Pe. Outside the contact region (lsi> 1) the tem
peratures n vanish quickly.

We note that the rise of the dimension temperatures Ti [see eqn (30)] is greater at the
interface when the sliding speed increases due to great energy generation at the interface
by friction. The effect of Pe on the temperature fields (16) and (18) is shown in Fig. 3(a,
b). We can see that at low Pe the heat diffusion in the half-space is significant in all
directions, but at greater Pe the temperature rising is restricted to a thin subsurface layer.
This effect is negligible for the cylinder.

The dependence of PHIP on the Peelet's number for several values of the dimensionless
conductivity K* is shown in Fig. 4(a). In the limiting case K* = 0 (the half-space is a
thermoinsulator), the dependence of PHIP on Pe is linear in accordance with the equation

where Pe = 3.54 is the limiting value of the Peelet's number at P -4 00 (PHIP -4 0). In the
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cases when both bodies are conductors this dependence is somewhat more complicated.
We can see that for K* > 1 the limiting value of Pe does not exist.

The dependence of the ratio PHIP on K* in Fig. 4(b) enables the following conclusions
to be drawn:

(I) at fixed Pe the ratio PHIP increases as K* increases;
(2) PHIP increases also as Pe decreases;
(3) physically acceptable solutions (i.e. that the interfacial traction in the contact

region is non-tensile and that the gap in the separation region is non-negative) are
not obtained if simultaneously Pe ~ 4 and the cylinder is a much poorer conductor
than the half-space.
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